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Abstract

Activation energy is calculated from a single curve of a derivative of mass loss perturbed by a sinu-
soidal modulation of a temperature-time relationship. The method is based on a prediction of a hypo-
thetical derivative of mass loss that corresponds to the absence of this modulation (perturbation).
Simple considerations show that the unperturbed derivative coincides with the modulated derivative
at inflection points of the modulated temperature–time relationship. The ratio of the perturbed and
unperturbed derivatives at the points of time corresponding to maxima and minima of the sinusoidal
component of the modulated temperature immediately leads to activation energy. Accuracy of the
method grows with decreasing in the amplitude of the modulation.

All illustrations are prepared numerically. It makes possible to objectively test the method and
to investigate its errors. Two-stage decomposition kinetics with two independent (parallel) reactions
is considered as an example. The kinetic parameters are chosen so that the derivative of mass loss
would represent two overlapping peaks. The errors are introduced into the modulated derivative by
the random-number generator with the normal distribution. Standard deviation for the random allo-
cation of errors is selected with respect to maximum of the derivative. If the maximum of the deriva-
tive is observed within the region from 200 to 600°C and the amplitude of the temperature modula-
tion is equal to 5°C, the error in the derivative 0.5% leads to the error in activation energy being
equal to 2–6 kJ mol–1. As the derivative vanishes, the error grows and tends to infinity in the regions
of the start and end of decomposition. With the absolute error 0.5% evaluations of activation energy
are impossible beyond the region from 5 to 95% of mass loss.

Keywords: activation energy, chemical kinetics, programmed temperature, thermogravimetry

Introduction

Determination of kinetic constants from data of thermogravimetry is usually associ-
ated with a selection of a model of decomposition [1–4]. Unfortunately, without cor-
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roboration by other independent methods, kinetic curves are not sufficiently informa-
tive to make unambiguous conclusions about a mechanism of decomposition,
although correct activation energies in case of one-stage processes can be obtained
for different models of decomposition, in other words, without exact knowledge of
the mechanism. With increasing accuracy of the formal approximation, a calculated
activation energy converges to a correct value [4–6].

The situation becomes much more complicated for multistage decomposition. In
this case, in addition to the selection of models, the calculation of activation energies for
different stages is problematic. If the number of stages and a manner of their conjugation
are assumed incorrectly, realistic values of activation energies are unobtainable. The best
indication for the number of stages, which should be assigned in a conjectural model of
decomposition, is the number of peaks in derivatives of curves of mass loss. However,
one can foresee the most difficult situation, when decomposition progresses as a multi-
stage process, but the derivative curve presents only one peak. If different stages are not
separated, a proof that the decomposition under study is really a multistage process, and
not a one-stage process, becomes an independent serious problem. To solve this problem
it is necessary to use the model-free methods that make possible to calculate activation
energy in the absence of a kinetic model of the process at all.

The well known model-free method is based on calculation of the integral of
Arrhenius exponential over time (the reduced time) for a set of isoconversional levels on
normalized kinetic curves. The isoconversional method was developed in different modi-
fications that differ in a procedure of calculation of this integral [7–13]. One can avoid
the calculation of the integral, if using derivatives of a mass change at the isoconversional
levels. The slope of the straight line expressing dependence of logarithm of the deriva-
tives vs. inverse temperature is proportional to activation energy [14].

The variant of isoconversional method developed by Ozawa [8], Flynn and Wall
[9] underlies the standard ASTM E1641 for determination of Arrhenius constants
[15]. According to the standard, for implementation of the isoconversional procedure
an experimenter has to measure a series of kinetic curves at different heating rates.

Under linear heating an activation energy E is calculated by the isoconversional
method approximately as a slope of the straight line plotted in the coordinates ln( / )Ti

2
ia

vs. 1/RTi, where R is the gas constant, Ti is a temperature of reaching certain
isoconversional level ai is the ith heating rate. In principle, two experiments with two heat-
ing rates are sufficient for these calculations; however, an acceptable estimation of E is
possible only in the case if these heating rates considerably differ. We note that, in prac-
tice, for an accurate statistical manipulation, the experiment should include many mea-
surements at four or more different heating rates [16].

The isoconversional method is only justified for one-stage processes. However,
applications of the improved isoconversional method [17, 18] were described for sys-
tems with multistage kinetics [19]. Such approach implies a formal dependence of ac-
tivation energy E upon the degree of conversion �, i.e., E=E(�). This approach con-
tradicts the physical sense of Arrhenius equation. As regards accuracy of such an em-
piric approximation, it obviously should depend upon the extent of overlap of differ-
ent stages of decomposition or upon the region of passing of different reactions. If the
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stages do not overlap each other, E(�) is a stepwise function and the prediction of
thermal behavior of a studied material can be done with the same success as in case of
one-stage decomposition. Unfortunately, as a general rule, different stages (reac-
tions) of decomposition substantially overlap each other. It is the main source of dif-
ficulties in the thermal analysis.

Recently developed high-precision thermobalance (Model 2950, TA Instru-
ments, Inc.) allows experimenters to set the modulated temperature mode [16, 20].
Temperature in the pan of this thermobalance rises by linear law by analogy with the
classical technique. However, the linear temperature-time relationship is perturbed
by a sinusoid with a controlled amplitude and frequency. The high precision makes
possible not only analysis of the integral (smoothed) dependencies but also the devia-
tions caused by the small sinusoidal perturbations. This technique allows a calcula-
tion of activation energy by using an only one curve of decomposition and not a series
of curves as in the classical method. Moreover, this procedure is model-free, just like
the isoconversional method.

Besides the economy of experimental time and the enhancement of accuracy the
modulated thermogravimetric analysis (MTGA) has one more important advantage
in comparison to the classical isoconversional method. In case of multistage kinetics
an overall mass change in a complicated manner reflects mass changes of compo-
nents participating in different processes. If the processes are not conjugated, the
mass loss corresponding to individual processes does not depend on heating rate, and
so different ranges of an overall � can really correspond to individual stages. How-
ever, for conjugated processes a calculation of isoconversional levels via the overall
� contradicts physical sense, even if different stages are manifested as separate peaks
in the derivatives of mass loss. For example, in case of competing reactions, at differ-
ent heating rates specimens with equal initial masses can have different final masses,
and so temperature dependencies of � at different heating rates can not be confronted
at all. For the calculation of activation energy by using MTGA, the degree of conver-
sion is unnecessary. Thus, if the stages of decomposition are well resolved, MTGA
gives activation energies for these stages independently of a manner of their conjuga-
tion.

Despite the absence of a physical sense of the dependence E(�) in case of multi-
stage kinetics, it can be used for a formal approximation of thermogravimetric data
and for finding of rough evaluations of activation energies for different stages. Proba-
bly a form of this dependence can provide information concerning a manner of conju-
gation of stages of decomposition, although, until now, this question was not investi-
gated properly. Efficiency of the calculation of activation energies by using MTGA
was demonstrated for the experiments with specimens undergoing both one-stage and
multistage decomposition [20]. However, to investigate details of the method it is de-
sirable to repeat similar calculations with kinetic data simulated numerically.

The present paper is devoted to numerical illustration of MTGA. The purpose of
the work is to verify the procedure of calculation of activation energies and to eluci-
date corresponding errors.
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Calculation of activation energy

In principle, modulations (perturbations) can be carried out experimentally in differ-
ent ways [21]. However, controlled sinusoidal modulations have some advantages
[16, 20]. According to the technique of TA Instruments, Inc. realized in Model 2950,
the modulated temperature is specified in the form

Tm(t)=To+at+Asin(2��t) (1)

where To is the initial temperature (as a rule, To is approximately equal to the room
temperature), a is a heating rate, � is a frequency (the number of oscillations per one
second), A is the amplitude of the modulation.

In our calculations A=5°C, 1/�=200 s. It is the standard mode of operation for
Model 2950.

The numerical example shown in Fig. 1 corresponds to decomposition passing
through two stages. These obey the differential equations describing second order de-
composition kinetics at the first stage and first order decomposition kinetics at the
second stage, namely

d�1/dt=k1(1–�1)
2exp[–E1/RT(t)] (2)

d�2/dt=k2(1–�2)exp[–E2/RT(t)] (3)

where �1, �2, k1, k2 and E1, E2 are the degrees of conversion (fractional mass losses), rate
constants and activation energies for the first and second stage, respectively, T(t) is a tem-
perature–time relationship that hereinafter will be denoted as Tm(t) and Tu(t) for the
modes of operation with the modulation and without the modulation, respectively.

We consider the case where the reactions are not conjugated (independent);
therefore the mass change is explicitly expressed via �1 and �2 as follows:

m(t)=w1(1–�1)+w2(1–�2)
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Fig. 1 The kinetic data simulated for artificial system with two independent reactions.
The fragment shown in the box is enlarged in Fig. 2



m0=w1+w2, t=0

where w1 and w2 are the limits of mass losses for the first and second reaction, respec-
tively, m0 is an initial mass. Note that in the modern thermobalances an actual initial
mass of a sample can be equal to 1–20 milligrams. By convention, the normalized
initial mass, for convenience, can be expressed as 1 g. This will be implied below in
the figures.

The constants used in the calculations are listed in Table 1. Differential Eqs (2)
and (3) were solved numerically by using Runge–Kutta method of fifth order provid-
ing six correct decimal digits [22].

Maxima and minima of Tm(t) are found from the condition

dTm(t)/dt=a+2��Acos(2��t)=0 (4)

If a�2��A, the function Tm(t) becomes monotonous. In our example the monot-
ony is reached at a�9.425°C min–1. Data shown in Fig. 1 were simulated with
a=9°C min–1. This heating rate is very close to the critical value (Figs 1, 2d and 2e);
however even with a monotonous function Tm(t) the modulated derivative presents
the oscillating function (Fig. 1).

The period 200 s does not restrict MTGA to investigation of only slow pro-
cesses, inasmuch as one can arbitrarily decelerate decomposition by decreasing heat-
ing rate. The amplitude 5°C seems to be small; however, it excites considerable oscil-
lations in the derivative of mass loss. Typical noise in the derivatives of mass loss in
measurements with older thermobalances probably most often arose because of
unmonitored changes of temperature. Usually this noise should be eliminated by
methods of smoothing of derivatives. However, in contrast to the standard TG, in
MTGA the oscillations of the derivatives are the main source of kinetic information.

For the sake of simplicity let us consider MTGA by addressing the modulation
to a one-stage decomposition.

The difference between derivatives corresponding to the modulated (A>0) and
unmodulated (A=0) temperature is expressed as follows:

F(t)= –[(dm/dt)m– (dm/dt)u]=kf(�m)exp[–E/RTm(t)]–kf(�u)exp[–E/RTu(t)] (5)

where � is the degree of conversion, f(�) is a function corresponding to certain mech-
anism of decomposition; the indices ‘m’ and ‘u’ relate to the cases of the modulated
and unmodulated temperature-time relationship, respectively.

If the frequency of the modulation � is sufficiently high and the amplitude of
modulations A is sufficiently small, the modulated and unmodulated mass changes
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Table 1 The constants for simulated two-stage decomposition

Stage E/kJ mol–1 k/s–1 w1/g w2/g Model

First 83.736 1�106 0.3 0.7 second order kinetics

Second 41.868 1 first order kinetics



(Fig. 1) differ insignificantly: mm(t)�mu(t), �m(t)��u(t). Hence, the main contribution
to the difference between two terms in Eq. (5) is caused on account of the difference
in the exponentials. Therefore, one can represent Eq. (5) in the following approxi-
mate form:

F(t)�kf(�u){exp[–E/RTm(t)]–exp[–E/RTu(t)]} (6)

One can see that, according to the approximation in Eq. (6), perturbed (modu-
lated) and unperturbed (unmodulated) derivatives coincide in points of intersection of
modulated and unmodulated temperatures Tm(t)=Tu(t) or at the points of time corre-
sponding to the equality tj=j(2�)–1, where j=0, 1, 2… Unfortunately, because of inac-
curacy of Eq. (6) the zeros of the function F(t) are somewhat shifted. However, their
displacements with respect to zeros of the sinusoid are sufficiently small (Fig. 2b).
Thus, having form the experiment two functions (dm/dt)m and Tm(t) one can predict
the function (dm/dt)u that with good accuracy is equal to (dm/dt)m at the inflection
points of Tm(t).

In a real experiment the temperature-time relationship Tm(t) is measured as some
tabulated function. It should be numerically approximated and then differentiated. At
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Fig. 2 The connection of the perturbation of the derivative of mass loss with features of
the temperature-time relationship: a – the derivative of mass loss, b – the differ-
ence between the modulated and unmodulated derivative, c – the modulation of
temperature Asin(2��t), d – the function T(t) under measure, e – the derivative
of the temperature modulation added to heating rate. The shown fragment corre-
sponds to the box in Fig. 1



the stage of differentiation one should envisage smoothing to exclude random noise.
The differentiation leads to the function expressed by Eq. (4) (Fig. 2e). Then the in-
flection points of Tm(t) are calculated numerically by finding the maxima and minima
of Tm(t)/dt. Approximation of Tm(t) in the form of Eq. (1) allows an extraction of the
sinusoidal component (Fig. 2c). Interpolation of the points on the curve (dm/dt)m cor-
responding to the inflection points of Tm(t) allows to plot the function (dm/dt)u. In par-
ticular, the example of quadratic interpolation is shown in Fig. 2a. Thus, it is possible
to determine F(t) (points in Fig. 2b) by using only simple numerical procedures.
Thereupon, the function F(t) can be considered as some new experimental informa-
tion for determination of the kinetic constants.

Note that all calculations for finding of F(t) can be carried out both for one-stage
and for multistage kinetics. In a future work we shall consider the method of determi-
nation of constants w1, k1, E1 and w2, k2, E2 for two-stage kinetics by using F(t) as orig-
inal information. Here we consider only formulae for activation energy that, unfortu-
nately, are accurate only for a one-stage process.

According to the assumption �m(t)�� u(t), the ratio of derivatives of mass change
for modulated and unmodulated temperature is expressed in the form

(dm/dt)m/(dm/dt)u=exp[–E/RTm(t)]/exp[–E/RTu(t)] (7)

Having determined the values of the derivatives at the points corresponding to
minima and maxima for the periodic component of temperature (Fig. 2a), from
Eq. (7) we obtain two values of activation energy for each period, namely

v v E R T A Tmin / exp{–( / )[ /( – )– / ]}1 1 11 1�
�

(8)
�

E RT T A A v v�[ ( – )/ ]ln( / )min1 1 1 (9)

v v E R T A Tmax / exp{–( / )[ /( )– / ]}2 2 21 1� �
�

(10)
�

E RT T A A v v� �[ ( )/ ]ln( / )max2 2 2 (11)

where vmin, v1 and vmax, v2 are the values of the modulated and unmodulated derivative
at the points of the minima and maxima of the periodic component of Tm(t); T1 and T2

are the values of unmodulated temperature at these points. To enhance accuracy it is
reasonable to use averaging

E E E� �( / )( )1 2
� �

(12)

Let us assume that A<<T1 and A<<T2. Having divided Eq. (10) by Eq. (8) we ob-
tain

v v v v E R A T Tmax min/ ( / )exp{( / )[ ( / / )]}� �2 1 2
2

1
21 1

Assuming that within a period the decomposition rate changes mainly due to the
modulation, whereas v2/v1�1, and by using the approximation 1 12

2
1

2/ /T T� �

2 21 2
2/[( )/ ]T T� , we come to the following formula:
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E RT A v v�( / )ln( / )max min
2 2 (13)

where T T T� �( )/1 2 2 is the temperature at the point of the intersection of Tm(t) and Tu(t).
Formula (13) was used earlier for the calculation of activation energies by

means of MTGA [16, 20]. However, this formula is less accurate than Eqs (9), (11)
and (12). Moreover, the only assumption that predetermines correctness of Eqs (9),
(11) and (12) is the smallness of an amplitude of the modulation. In addition to this
assumption, Eq. (13) implies the smallness of a period of the modulation.

Evaluation of errors

In the thermogravimetric experiments the source of main errors is usually hidden in
the measurements of mass. Errors in a derivative of mass loss are the consequence of
errors in the function m(t).

Direct differentiation of the random function m(t) is impossible, and so the nu-
merical differentiation of m(t) should be regularized, namely, the obtained derivative
dm(t)/dt is always artificially smoothed. The regularization (smoothing) is equivalent
to a cut-off of the random high-frequency noise in a derivative. Such smoothing can
be implemented by various numerical methods. However, a filtration of random
noise in the modulated derivative (dm/dt)m entails serious difficulties, since a digital
filter should eliminate noise with frequencies higher than �, but it should not influ-
ence the modulation with carrier frequency �. Perhaps, to calculate both the per-
turbed derivative (dm/dt)m and the perturbation F(t) with good accuracy, the signal
should be passed through two filters. The first one should delete noise with frequency
higher �; the result will be the function (dm/dt)m. The second filter should delete both
the oscillations caused by the temperature modulation and random noise with fre-
quencies being commensurable and higher to �. The result will be the function
(dm/dt)u. Than one can calculate the difference F(t)=–[(dm/dt)m–(dm/dt)u].

In the standard software of Model 2950 a signal is handled by using the tech-
nique of the discrete Fourier transformation. Unfortunately, details of this procedure
were not described in the articles [16, 20]. From general considerations, the methods
of a digital filtration can hardly allow a reliable elimination of random noise with fre-
quency 	� to extract the perturbation F(t) with good accuracy. Perhaps, a properly
selected method for approximation of the function (dm/dt)m could give better results.
However, a solution of this serious problem remains outside the present article. We
should keep in mind only that the derivative (dm/dt)m always contains noise, and so
the calculations of activation energy by Eqs (8)–(12) give an appreciable error.

Let us assume that the functions (dm/dt)m and (dm/dt)u were measured in differ-
ent experiments in which the derivative (dm/dt)u was measured exactly, whereas the
derivative (dm/dt)m contains noise, namely

( / ) ( / ) ( )d d d dm m
(i)

m tt = m t �
 (14)

where ( / )d d m
(i)

m t is a derivative that could be measured in an imaginary ideal experi-
ment without errors, 
(t) is noise included in the real derivative.
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If the amplitude A is small, we can rewrite Eq. (6) in the form

F t E T t T t RT t( ) – ( / ) {[ ( )– ( )]/ ( )}� d d u m u um t 2 (15)

One can see that the perturbation F(t) and the unperturbed derivative of mass
loss (dm/dt)u are connected by the scale transformation in which activation energy is
the scale multiplier. This fact, in particular, can be useful for designing a technique of
smoothing of the modulations and suppression of random noise.

Extraction of activation energy from Eq. (15) leads to the following equation:

E RT t F t T t T t�– ( ) ( )/{[ ( )– ( )]( / ) }u ud d2
m u m t (16)

All functions in the right-hand part of Eq. (16) are calculated from experimental
information.

The absolute error �E in activation energy due to noise in the signal is equal to

�E RT t t A�–(– ) ( ) ( )/[ ( / ) ]1 2j
j ju ud d
 m t (17)

The relative error is defined by the equation

�E/E�
(t)/F(t) (18)

If (dm/dt)u�0 and, consequently, F(t)�0, the denominators of the expressions
in the right-hand parts of Eqs (17) and (18) tend to zero, hence, both absolute and rel-
ative error tends to infinity. Therefore, a calculation of activation energy is impossi-
ble in the flat parts of the curve m(t).

At the points of time, where Tm(t)=Tu(t), the denominators also equal zero.
Therefore, it is rational to carry out the calculations at the points of extrema in the
modulated derivative in order to provide the maximal swings of the decomposition
rate and, hence, to increase a ratio of a useful signal with respect to random noise. At
these points Eq. (17) has the form

�E RT t t A�– ( ) ( )/[ ( / ) ]u j j ud d2 
 m t

where tj=(1/2+j)/2�; j=0, 1, 2…. Closely disposed points in the random function 
(t) are
correlated because this function corresponds to a smoothed derivative and is smoothed as
well; however, the points situated at the distances 1/(2�) are weakly correlated. We can
assume that the values 
j=
(tj) are random numbers with the normal (Gaussian) distribu-
tion. This implies an even absolute error within entire range of measurement of mass loss.
Such an assumption seems to be most acceptable for fast a priori estimations, according
to which the error in activation energy can be expressed as

� E RT t A�–(– ) ( ) /[ ( / ) ]1 2j

u j j ud d� m t

where � is a standard deviation, j are random numbers with the normal distribution
and the unit variance. The numbers j can be set in a computer by the random-number
generator [22].
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It is convenient to evaluate the absolute error with respect to the maximum of the
derivative, namely, � �� �max[–(d /d ) max[–(d /d )u mm t m t] ]� where ��100% is per-
cent tage of error in the derivative at its maximum. Then an average scattering of acti-
vation energy at the maximum of the derivative is

�E RT t A	� u j

2 ( ) /�

If the maximum of the derivative is observed inside the region from 200 to
600°C, with A=5°C and �=0.005, we have �E	�2–6 kJ mol–1. As the derivative van-
ishes, this error grows proportionally to the ratio max[–(d /d ) (d /d )u um t m t]/– .

We considered the situation where the derivative (dm/dt)u is known exactly. In
our calculations this derivative is searched from the derivative (dm/dt)m and, conse-
quently, contains random noise 
1(t). However, for significant fragments of the deriv-
ative, when we can assume –(dm/dt)u>>|
1(t)|, Eq. (17) remains valid, we should only
replace 
(t) by 
(t)–
1(t).

By using Eqs (9) and (11) one can make the following simplest estimation of the
confidence interval for activation energy:

E E RT T A A v v

RT T

� 	 � � � � �

�

� {[ ( )/ ]ln[( )/( ( ) )]

[ (
min1 1 1

2 2

� �

� � � �A A v v)/ ]ln( )/( ( ) )}/max � �2 2
(19)

Results and discussion

In Fig. 3 the difference between the modulated and unmodulated derivatives is plotted at
different heating rates. One can see that the prediction resulting from the interpolation
shown in Fig. 2a becomes worse with increasing in heating rate. The real experiment
contains restrictions both on amplitude and on period of the modulation. If these restric-
tions are exhausted, the remaining experimental parameter, which can govern accuracy,
is the heating rate. To reach good accuracy one should select a heating rate so as to pro-
vide at least 10–15 periods of modulation for each stage of decomposition.

Numerical mathematics can give an additional reserve of accuracy. Probably the
quadratic interpolation is not the best variant for the prediction of unperturbed deriva-
tives. The known digital filters [23] can probably provide a better resolution of modu-
lated derivatives into the periodic and systematic component. Variants of a theoreti-
cal approximation of F(t) could be yet better.

In Fig. 4 the calculated activation energies are shown depending on mass loss
under decomposition at three heating rates. Each curve in Fig. 4 was plotted point by
point by using the procedure described in the previous section. High accuracy of eval-
uation of correct activation energy for the second stage (Fig. 4b) proves legitimacy of
the method for one-stage processes. Indeed, over wide range of mass loss the second
stage is controlled by the rate of the second reaction with smaller activation energy.
That is why within the interval 0.6<m0–m<1 the calculated activation energy (Fig. 4b)
is constant. At the smallest heating rate 3°C min–1 it corresponds to the correct value
E2=41.868 kJ mol–1 with accuracy 	99%.
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The assumption concerning constancy in a rate of decomposition within each
period of modulation, which was assumed for the derivation of Eq. (13), leads to the
appreciable errors (compare Fig. 4a and Fig. 4b). In other words, when using the in-
terpolation shown in Fig. 2a, accuracy is improved. However, in the case of multi-
stage decomposition this technique is imperfect, since an interpretation of E(m) for
multistage kinetics encounters serious difficulties.

Note that despite the apparent domination of the first reaction (Fig. 1) at the first
stage of decomposition, the calculated activation energy does not reach the magni-
tude of E1=83.736 kJ mol–1, and at the limit m0–m�0 the calculated activation energy
tends to the value corresponding to the second reaction E2=41.868 kJ mol–1. This ob-
servation can be readily explained.

At a small degree of decomposition we have

–dm/dt=w1k1exp(–E1/RT)+w2k2exp(–E2/RT)

Two terms become equal at the temperature expressed by the following formula:

Ta=(E1–E2)/[Rln(w1k1/w2k2)]

J. Therm. Anal. Cal., 70, 2002
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Fig. 3 The perturbations of the derivatives of mass loss calculated as the difference be-
tween the modulated and unmodulated derivatives. The points result from the
procedure shown in Fig. 2a



In our example Ta=115°C. If T<Ta the second reaction prevails. This situation
takes place within the region of very small mass loss (Fig. 4). Nevertheless, accurate
computations allow its detection.

According to Fig. 4b, the dependence E(m) has a reproducible form at different
heating rates. This fact to some extent justifies its use for empirical predictions. How-
ever, it is possible only for systems with independent reactions like the system under
consideration. A competition of reactions undoubtedly will hinder such predictions.
Hence, the next step of the theory of MTGA should be directed to approximation of
the kinetic data by using models of multistage kinetics.

Data shown in Fig. 4 were generated with the accurate derivative (dm/dt)m, as if
we had a ‘fantastical’ device allowing its measurement with accuracy 99.999%. The
results shown in Fig. 5 are related to the case where the modulated derivative is per-
turbed at the reference points by the random number generator j with the normal dis-
tribution. The standard deviation � was calculated with respect to the maximum of
the modulated derivative. One can see that the change of the chance error in E occurs
in full accordance with the predictions made in the previous section.

The confidence interval (see the gray bands in Fig. 5) was calculated by Eq.
(19). It is seen that the latter equation gives sufficiently reliable estimations. With the
standard deviation 	05. % a significant calculation of activation energy is possible
only within the interval of mass loss from 5 to 95%. At the beginning and at the end of
decomposition the calculations become uncertain due to errors.

J. Therm. Anal. Cal., 70, 2002

576 MAMLEEV, BOURBIGOT: SINUSOIDALLY MODULATED TEMPERATURE

Fig. 4 Activation energy calculated as a formal function of mass loss a – by using the
technique of TA Instruments, Inc. [16, 20] and b – by using the procedure
shown in Fig. 2a



The deviation 	05 1. – % probably is most close to the real resources of
Model 2950. Additional reserve of accuracy could give a smoothing of E(m). How-
ever, a maximally accurate experimental determination of the difference F(T) be-
tween perturbed and unperturbed derivatives should forego manipulations with E(m).
Naturally, all possible methods of the signal processing should be examined and sub-
stantiated by using a numerical simulation.

Conclusions

The implemented calculations show that MTGA is more informative in comparison
with the traditional technique. In particular, the calculation of activation energy,
which requires a series of kinetic curves in the isoconversional method, can be carried
out by using an only one curve. Moreover, the activation energies for different stages
of decomposition can be evaluated in MTGA, even if these stages are conjugated.

Illustrations in this paper are made relative to the numerical example. This al-
lows a maximally strict and objective substantiation of principles of MTGA. Never-
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Fig. 5 The influence of chance errors a–c on the results of calculation of activation en-
ergy and the corresponding curve d of the perturbation of the derivative of mass
loss calculated at heating rate 3°C min–1



theless, practical realization of the method necessitates an additional detailed analysis
of experimental errors and their influence on accuracy of final results.

The main idea consists in a recalculation of the modulated (perturbed) deriva-
tives of mass loss into unmodulated (unperturbed) derivatives. Perhaps, the discrete
Fourier transformation envisaged at present for this purpose in standard software is
not the best technique for such recalculations. In any case, experimental derivatives
should be preliminarily smoothed. The best result could be obtained, if smoothing
would include a priori information about the kinetic effects caused by the temperature
modulation.

Activation energies for multistage kinetics cannot be determined sufficiently ac-
curately by means of the model-free procedure. However, their evaluation values
could be useful for subsequent MTGA of decomposition by using complicated mod-
els of multistage kinetics.

* * *

Vadim Mamleev is grateful to Professor Jean-Marie Castelain, Director of ENSAIT for his kind in-
vitation in laboratory GEMTEX for a continuation of the researches on thermal analysis of decom-
position processes.
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